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UNSTEADY HYBRID VORTEX TECHNIQUE FOR TRANSONIC VORTEX FLOWS
AND FLUTTER APPLICATIONS

By

Osama A, Kandil*

SUMMARY

This report covers the progress of research work performed under this grant
in the period of January 1, 1987 to July 31, 1987. During this period of
seven months, the following papers which report on the accomplishments and

results have been presented and published (copies of some of these papers

are attached to this report):

I. Integral Equation Solution of the Full-Potential Equation for Steady and

Unsteédy Transonic Flows:

A. "Integral Equation Solution For Transonic And Subsonic Aero-
dynamics.* Kandil, 0. A. and Hu, H., presented at the Third GAMM-
Seminar on Panel Methods in Mechanics, Kiel, West Germany, January
16-18, 1987. Published in "Notes on Numerical Fluid Mechanics". B.

B. "Full-Potential Integral Solution for Transonic Flows With And
Without Embedded Euler Domains," Kandil, 0.A. and Hu, H., AIAA 87-
1461, Honolulu, Hawaii, June 8-10, 1987. Submitted for publication
to AIAA Journal.

C. "Transonic Airfoil Computation Using the Integral Equation With and
Without Embedded Euler Domains," Kandil, 0.A. and Hu, H., 9th
International Conference on "Boundary Element Methods in

Engineering, University of Stuttgart, Stuttgart, West Germany,

*Professor, Department of Mechanical Engineering and Mechanics, 01d Dominion
University, Norfolk, Virginia 23508



E. "Influence of Numerical Dissipation on Computational Euler Equations
for Vortex-Dominated Flows," Kandil, 0.A. and Chuang, A.H., AIAA
Journal, Vol. 25, No.9, September 1987.

IITI. The following abstracts have been submitted for presentations:

Iv.

A. "Unsteady Vortex-Dominated Flow Around Maneuvering Wings Over a Wide
Range of Mach Numbers," Kandil, 0.A. and Chuang, A.H., submitted for
presentation at AIAA 26 ASM, Reno, Nevada, January 11-14, 1988.

B. "Unsteady Transonic Airfoil Computation Using the Integral Equation
Solution," Kandil, 0.A. and Hu, H., AIAA 27 SDM Conference,
Williamsburg, Virginia, April 19-21, 1988.

The following talks will be given at the ICASE, Nasa Langley:

A. "Full-Potential Integral Solutions for Steady and Unsteady Transonic
Airfoil computations With and Without Embedded Euler Domains," Hu,
H. and Kandil, 0.A., August 18, 1987.

B. "Steady and Unsteady Euler Computations of Various Flow Regimes Past
Delta Wings," Chuang, A.H. and Kandil, 0.A., August 27, 1987.

The Principal Investigator has chaired and organized the following

sessions and conferences of the AIAA:

General Chairman and organizer, Fluid Dynamics Sessions (29 Sessions),

AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, January 12-15,
1987.
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Chairman and organizer, Incompressible Navier Stokes II, AIAA 8th Compu-

tational Fluid Dynamics Conference, Honolulu, Hawaii, June 9-11, 1987.

Chairman and organizer, Leading-Edge Vortex Flows, AIAA 9th Fluid

Dynamics, Plasma Dynamics and Lasers, Honolulu, Hawaii, June 8-11,

1987.

Chairman and organizer, Vortex Flow II, AIAA 25th Aerospace Sciences

Meeting, Reno, Nevada, January 12-15, 1987.
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TRANSONIC AIRFOIL COMPUTATION USING THE INTEGRAL EQUATION WITH
AND WITHOUT EMBEDDED EULER DOMAINS

Osama A. Kandil and Hong Hu

Department of Mechanical Englneering and Mechanics,
0l1d Dominion University, Norfolk, VA 23508, USA

INTRODUCTION

Computation of the transonic flow around airfoils and wings
using finite-difference and finite-volume methods requires
fine grids and large computational domains around the source
of disturbance. The outer boundary of the computational
domain 1s wusually placed at several chord lengths away from
the inner boundary. Moreover, special treatment 1is required
at the outer boundary to approximately satisfy the farfield
boundary conditions. Using different levels of
approximations, inviscid computational schemes have been

developed based on the Transonic Small Perturbation (TSP)
equation (Murman and Colel; Edwards, Bland and Siedelz), Full
Potential (FP) equation (Steger and Lomax3; Garabedian and

Kor:n“; Jamesons) and Euler equation (Jameson6). These schemes
require large capacity of computer memory to handle the large
number of grid points and the associated flow variables. They
also require large CPU time to obtain converged solutions due
to the large number of iteration cycles —— usually it is of
order a thousand.

The potential equations can be used for flows with weak
schocks since the entropy increase and vorticity production
across these shocks are small. For strong shocks, the
irrotational and isentropic flow assumptions are invalid and
one cannot use the potential flow equations across or behind
the shocks. For these flows, one has to correct the potential
equations in order to include the entropy jump across the
shock wave, Methods of this type have been developed by Hafez

and Lovell7, Fuglsang and Williams® and Whitlow, Hafez and
Osherg. Alternatively, one has to use the computationally




more expensive Euler equations.

The Integral Equation Formulation (IEF) using the TSP
(Piers and Slooflo; Tseng and Motinou) or the FP (Kandil and
Yateslz; 0skam13; Erickson and Strande“'; Sinclairls; Kandil

and Hul®) equations represents an alternative to the finite
difference and finite volume methods to treat transonic flows
with weak shocks. With the IEF, the farfleld boundary condi-
tions are automatically satisfied and only a small computa-
tional domain 1is needed around the source of disturbance.
Moreover, the accuracy of the method depends on the evaluation
of integrals rather than derivatives and hence coarse grids
can be used within the small computational domain. Because of
these obvious advantages of the methods which are based on the
IEF, it is highly desirable to fully develop these methods and

extend them to treat transonic flows over a wide range of Mach
numbers.

In this paper, we present a transonic integral equation
method which 1is based on the full potential equation, and
couple the method with embedded Euler domains to treat strong
shocks. The method {s extensively applied to different
airfoil sections and Mach numbers. The results are compared
with experimental data and other results which were obtained
by using finite-difference and finite-volume methods with TSP,
FP and Euler equations.

FORMULATION

Full Potential Equation
_For transonic flows with weak shocks, the dimensionless

governing equations of the two—dimensional, steady, potential
flow are given by

d +d =G 1

wx T Oyy (1)

G-i(p d +p_ o) (2)
P TX X Yy 'y

o=l +Lhel 1 -dl - "5”1“_1 L (3)

where & is the total velocity potential, p the density, M_
the freestream Mach number, y the ratio of specific heats and
the subscripts x and y refer to the derivatives. It should be
noted that G represents the total compressibility in the flow.
The characteristic parameters are the freestream velocity
(U_) and density (p_) and the airfoil chord length (2).




The boundary conditions on the airfoll g, away

from g and at
the trailing edge TE are given by

V@ en =0 on g(x, y) =0 (4)

7 > ;Q ' avay from g (5)

AC l =0 (6)
PiTe

where 0 = Vg/lVg', e, 1s a unit vector parallel to U and
ACp is the pressure jump. The pressure coefficent is given by

1
.2 y-1 .2 2 _ 2,.Y/r

<, , {lt+=m Q- a o)1
(-]

-1} (7)
The formal solution of Eq. (1) in terms of the velocity field

V® with explicit contribution of the shock surface S 1is
obtained as

VQ(X,}’) = e +_¢ q (s) (x-Q 1 + (Y"‘n) j ds
(x-?;) + (y-n)

¢ Y (3) (Y"ﬂ) 1 - (x_j) j
(x-&) + (y-n)

+ L 1) oz m {28 “ (y=n) j dgdn
(x-i) + (y-n)

L ¢S qs(S) (f £) i + (y=-n) j
x-a) + (y-n)

(8)

where g and vy are the airfoll surface distributions of
sources and vor%icity, respectively, and g is the source

strength of the shock surface. In the shock-capturing scheme,
the last integral term in Eq. (8) is dropped, since this term
is 1included in the third integral term of the equation. . In
the shock capturing-shock fitting scheme, the last integral
term corresponding to the shock surface is retained when shock
f{tting 1s used. For shock fitting, the following equations
are used to determine the shock strength qg, properties behind

3




the shock Pys v2n’ V2t and the orientation of the segments
forming the shock surface f:

2 vln 1
qg = = (Vln VZn) = - vy (1- ;—5 , Mln > 1 (32)
in
(y-1) M7+ 2
V2n = 2 Vln (10)
(r+1) Mln
Ve ™ V1e (11)
(y+1) Mi
n
Py = 2 I (12)
(y=1) M * 2
1/2
- -1 r1.2 sinf sinf 1
g=stn [ cos (p-6) 2:I (13)
M
1
b i i
2 . = * - 2
My =M, |v@| /e © s My =M VB e n/p (14)

where the subscripts 1 and 2 refer to the conditions ahead and
behind the shock, respectively, while n and t refer to the
normal and tangential directions to the shock surface 8§,

respectively, and 8 1s the relative direction of the flow
behind the shock to that ahead of the shock.

Euler Equatiouns

For strong shocks, an embedded computational domain {is
constructed around the shock which has been preliminary found
by the Integral solution with shock capturing only. With the
boundary and initial conditions found from the Integral
solution, the unsteady conservative form of the Euler
equations are solved in this limited domain with psuedo time
marching. The dimensionless conservative form of these
equations is given by

bt+ax+ y 0 (15)

where the flow vector field c-l and the flux components E and

=3



F are given by

- t

q= [P, pu, pv, pe] (16)
- 2 t

E = [pu, pu” + p, puv, puhl] (17)
- 2 t

F = [pv, puv, pv + p, pvh] (18)

The total energy and enthalpy per unit mass are given by

e '?FiL)p‘* (u? + v2)/2, h=e+ p/p (19)

Since we are interested in the steady flow solution only, the
energy equation [last elements in Eqs. (16)-(18)], which is a
differential equation, is replaced by the algebraic steady
form which states that the total enthalpy is coustant. Hence,
the energy equation is replaced by

p = (o/y) 11 + (y=1) (1 = o® = ¥¥)/2] (20)

METHOD OF SOLUTION

Shock=Capturing Shock-Fitting (SCSF) Scheme

The basic difference between the Iincompressible Integral
Equation Solution and the transonic Integral Equation Solution
are the additional third and fourth integral terms of Eq. (8).
In the shock capturing part of the scheme, the fourth integral
term is dropped while in the shock fitting part of the scheme
this term is taken into account.

The . SCSF-scheme 1is an 1iterative scheme due to the
nonlinearity of the third and fourth integral terms. The
iterative scheme is described below:

Neglecting the fourth integral term and setting G = 0, a
standard panel computation {s used to obtain q_ and/or y_.

The g and vy are plecewise linear distributions on each

surface panel and they are defined in terms of their nodal
values., Initial values of G are calculated at the centroids
of the field elements by using the linear compressibility

relation G =M us where u, 1s the x-derivative of the x-

component of the Jelocity. The centroidal value G represents




the G value for the field element. Equation (8) 1is then used
to enforce the surface boundary conditions, Eqs. (5) and (7)
to find new g and/or y . The density p and nonlinear
compressibility G are calculated by using Eqs. (3) and (2). A
type finite~-difference expression is used to calculate p_ and

P depending on the type of the centroidal point-subsonic or

supersonic, Once the G values are obtained, the surface
boundary conditions are satisfied again. The 1iterative
procedure 1is continued until the shock location is fixed.
This is the shock capturing part of the scheme.

Shock panels are then introduced at the shock location,
the fourth itegral term of Eq. (8) is now taken into account,
Eqs. (9) and (13) are used to calculate qg and B and Egs.

(10)-(12) are used to cross the shcok panel. The iterative
procedure is continued as before with the exception of dealing
with the shock panels as explained. Convergence is achieved
once the surface pressure converges. This 1s the shock
fitting part of the scheme.

Integral Equation With Embedded Euler (IEEE) Scheme

In this scheme, the shock capturing part of the SCSF-scheme is
used to locate the shock. Once the shock is captured, a fine
grid is comstructed within a small computational region around
the shock where a finite-volume Euler scheme i{s used. The

basic finite-volume equation is obtained by integrating Eq.
(15) over x and y to obtain

[[8an+§ (ay+Fan) =0 (21)

Equation (21) is then applied to each cell of the embedded

grid of the Euler domain. The resulting difference equation
is

4
3
&) aa,,+ T (EAy +FAx)=0 (22)
Ot I r r

where AA 1is the cell area, r refers to the cell-side number
and the integer subscripts i, j refer to the centroidal
values. The Euler solver 1is a central-difference finite-
volume method which uses four-stage Runge-Kutta time stepping
with explicit second~ and fourth-order dissipation terms. The
details of this solver are given in reference {17].

The boundary and initial conditions for the Euler domain
are. obtained from the Integral equation solution which {is
interpolated on the Euler domain grid. The Euler solver is



then used to capture the shock and calculate the flow vector
field q. It should be emphasized here that the downstream
boundary condition must be_ updated while Euler calculations
are excuted. Fixing the q values of the Euler domain, the
IE calculation 1Is used to update the boundary conditions for
the Euler domain. The iterative procedure 1is repeated until
convergence is achieved.

COMPUTATIONAL EXAMPLES

In this section, we present applications of the SCSF- and
IEEE-schemes to the NACA 0012 and 64A010A. According to the
convergence study using different sizes of the IE
computational domain, which was presented by the authors

(Kandil and Huls), a computational domain of 2 x 1.5, in the x
and y directions, has been used around the airfoil in all the
following applications. A rectangular grid of 64 x 60 has
been used for the IE computation, Tha grid is clustered in
the 1leading edge, the shock region and near the airfoil
surface. Since the third {integral term of Eq. (8) {is
computationally expensive, 1its computation with counstant G
distribution has been restricted to the nearfield computation.
For the farfield computation, this term 1s replaced by the
equivalent lumped source term at 1ts centroid. With
sufficient accuracy, it has been computationally determined
that the nearfield distance from the centroid is < 0.5.

Figure 1 shows the results of the SCSF-scheme for NACA
0012, M_= 0.8 and a = 09, along with comparisons with the

computational results of Garabedian, Korn and Jamesonls, and
the experimental data taken from reference 19. The SCSF
scheme took 12 iteration cycles of shock capturing (SC) and 13

cycles of shock fitting (SF) to achieve convergence.

Figure 2 shows the results of the IEEE-scheme for the
same case along with a comparison with the computational
results of Jameson6 who also used the finite-volume Euler
scheme with four—-stage Runge Kutta time stepping. In the
present IEEE~-scheme, the embedded Euler domain has a size of
0.5 x Q.6 around the shock region with a grid of 25 x 30.
This case took 10 iteration cycles of SC, 250 time cycles of
Euler iterations to achieve a residual error of 1073 and 5 IE
cycles to update the Euler domain boundary conditions.

Figures 3 and 4 show the results of the SCSF- and IEEE-
schemes for NACA 64A010A, M_= 0.796, a = 09 along with
comparisons with the computational results of Edwards, Bland
and Seidel? who used the TSP equation, and the experimental
data taken from reference 2.° With the SCSF-scheme, the




numbers of SC and SF iteration cycles to achieve convergence
_ are the same as those of the case presented in Fig. 1. With
the IEEE-scheme, the embedded Euler domain has a size of 0.7 x
0.6 with a grid size of 35 x 30. This case, Fig. 4, took 10
iteration cycles of SC, 130 time cycles of Euler i{iterations to

achieve a residual error of 1073 and 3 1E cycles to update the
Euler domain boundary conditioms.

Figures 5 and 6 show the results of the SCSF- and IEEE-
schemes for the 1lifting case of NACA 0012, M_ = 0.75 and

a =20 along with the computational results of Steger and

Lomax3, and the experimental data taken from the same

reference. The size of the grids and the number of iteration
cycles used to achieve convergence are the same as those of
the cases given in Fig. 1 and 2.

Figure 7 shows the results of the IEEE for NACA 0012,
M, =0.812 and «a= 0% along with the experimental data of
reference 18. In Fig. 8, the results of the IEEE for NACA
0012, M_= 0.82 and a = 09 are shown along with the three-

dimensio:al solution at the wing root chord of Tseng and

Morinoll, who use the IE for the TSP, and the experimental

results of reference 20. The size of the embedded Euler

domain for these cases is 0.8 x 0.8 and the computational grid
is 40 x 40. ’

CONCLUDING REMARKS

Two transonic computational schemes which are based on the
Integral Equation Formulation of the full potential equation
have been presented. The first scheme is a Shock Capturing-
Shock Fitting (SCSF) scheme which uses the full potential
equation throughout with the exception of the shock wave where
the Rankine-Hugoniot relations are used to cross and fit the
shock. The second scheme 1is an Integral Equation with
Embedded Euler (IEEE) scheme which uses the full potential
equation with an embedded region where Euler equations are
used., The two schemes are applied to several transonic
airfoil flows and the results have been compared with numerous
computational results and experimental data, The two schemes
are nevertheless efficient as compared to the other existing
schemes which use finite-difference or finite-volume methods
throughout large computational domains with fine grids. The
SCSF-scheme is restricted to flows with wveak shocks, while the
IEEE-scheme can handle strong shocks. Currently, the IEEE
scheme is applied to other tramsonic flows with strong shocks
as well as to unsteady pitching oscillations.
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OUTLINE OF THE TALK

MOTIvATION AND QRJECTIVES

FormuLATION

- CuassicaL anp Zero-ToTaL-PRessure-Loss SETS

~ Surersontic Contcat Frow EquaTions

- Recavive Motion IN A RoTaTING FRAME oF REFERENCE

HIGHLIGHTS OF MeTHOD OF SoLuTiow

APPLICATIONS:

- Conrcar FLow, SHarp-EDGeDp WinGs (Crassicat anp ZTPL SeTs)

- Conican Frow, Rounp-EpGep Wings (CrassicaL anp ZTPL Sers)

- Turee-DimMenstonaL FLows; TrRansonic anp Low-SpeeD FLows

CoNCLUDING REMARKS

Untrorm RoLLing I8 a Contcar Frow

0 1.0

- RouLing OsciLeaTion IN A Locatry CowicaL Frow }

Classical
Vortex

Separation
Bubble with
No Shock

No Shock/
No Separation

Shock with no
Separation

Shock=Induced
Separation

Separation
Bubble with
Shock

Vortex with
Shock

Figure 1. Miller and Hood1 Classification Diagram.

Nu..n.'a.f
Examp les (1)

Nuwmerical

EX-—T? les(?)



o CONSERVATION FoRM OF EuLER EQuaTions IN A Space-Fixep FRAME oF REFERENCE

ConNicAL VARIARLES

ConicaL FrLow LouaTiowng

WHERE

F-1)

CLASSICAL EULER EQUATIONS

= Cp, pu, ov, pw, pel®

= [pu,

= [ov,

= [pw,

= ploly-1) + (u + vy

= e +p

{ =

oul + P, Puv, puw, punlt

puv, pvz + p, pvw, ovh]t

puw, pww, pw? + p, pwhl®
2

+ wz)/z

/o

SUPERSONIC CONICAL FLOW EQUATIONS

xn“.y/!.C.Z/x

(1)

{2)

(3)

(4)

(s)

(6)

(1)

(6)

(7

(9}



Zero—-Total-Pressure—Loss Euler Equations

. Replace the energy equation by either
one of the isentropic gas equations

p/pY = const. or g_t_(ps) + Ve(psv) = 0

Set (1): o Replace the x-momentum equation (second
elements in the vectors given in Egs.
(2) *and (3)) by the steady energy
equation (total constant enthalpy)

_ _ YD 1,2 2 2
h—const-m+2(u + v" + W)

Set (2): * Replace the continuity equation (first

elements in the vectors given in Eqs.

(2) and (3)) by the steady ener
equation given in Set (1) d ¥

EXPLANATION OF TOTAL-PRESSURE CHANGE
FOR CLASSICAL AND ZTPL SETS OF EULER EQUATIONS

DiererenTiaL fulER EQUATIONS

Crocco’s THEOREM

- ?
TeS uxv+ﬁ¢n ()
DeriniTION OF ENTROPY CHANGE :

Pt T

As-Ran—'+c N e— (2)
T P [}

(A) Crassical SET

= 0, h = const AND

b

STEADY FLOW
- - PT.
TVS=wa.AS=R1n-p——
T
FOR A FREE-SHEET @ IS PARALLEL To ¥! ¢S = 0 » PT = PT +» lero-ToTaL-PrResSuRE Loss
(r) Zero~toTAL-PreESSuRe-Loss SET (Swock-FREE AND WEAK SHocks)
h = const, VS = O

AND © MuST BE PARALLEL To V, PT = PT + lero-ToTaL-PreESSure Loss




Crocco’s THEOREM

TAS=axV+ %% + Uh - % v « & Viscous-ForRM oF THE EQUATION

DeriniTiON OF EnTROPY CHANGE

Py

T
AS =R tn 1,...'1 +C 2 T2.
T pn ]

(a) LiassicaL SET

FOR STEADY FLOW %% = 0, h = const AND

. 4

T
T9S =ax7 + Numerica) Dissipation, 4 § = R 2n p—:
T

EVEN IF @ IS PARALLEL T0 V, v S » 0 « PT * PT + Non-Zero TPL

(R) ZERo-ToraiL-PrESSURE-L0SS SET (SHOCK-FREE AND WEAK SHOCKS)

h = const, A4S =0 AND

0 = wx V + Numerical Dissipation, Pr = Pr » Zero TPL

CLASSICAL EULER EQUATIONS FOR THE RELATIVE MOTIOM IN A ROTATING

FRAME OF REFERENCE

(1)

(2)

L4 THE CONSERVATION FORM OF THE CLASSICAL EULER EQUATIONS FOR THE ABSOLUTE MOTION

OF THE FLOW IN A SPACE-FIXED FRAME OF REFERENCE
g% sV e (p V) =0
el sy piiep =0
21§151 sV e (ph¥) =0 .
v2
e = p/e(y=1) + =

h =e + p/p

(1)

(2)

(3)

(4)

(5)




To express these equations

in terms of a

moving frame of reference, we use the following

relations of the substantial and _local

derivatives for a scalar "a" and a vector "A":
g% = -gTar (6.a)
g_afsg—t?.- vt e Va (G-D)
- v
%% = g—f + wxA (7.a)
- . .
%8%-Vt°VA+wa (7.b)

® The transformation velocity 'Is a function of

the moving frame of reference translation and
rotation

(8)

Restricting the motion of the frame of reference to the

rotational motion,
; DVO
P 0 and T - o0,

e the equations of relative motion in the rotating frame of reference

a'P - =
ST le V) =0 (9)
3'(p V )
_a'f'_ +97 < [p V V +pNa. p[mxr + wav + mx(wxr)] {10)
d'(p e ) . ’
—sr— 7 lon i - oLV, (@xF) + (@xF) « (3x7)] (11
where )

v

1 - - - - .-

er'—(_anpy- +?E-?|uxr| =e ~V o (wxr) (12)

vf 2 :
h,. ssﬁ.g.n. + o [oxF| = h ~ ¥V o (axr) (13)




b The abstract conservative form of the relative motion
the rotating coordinates (x', y', z') is given by

in  terms of

X 3'E. ¥3'F  3'§
A Tl SN R (14)

where

9. = [o, UL PV, pW_, pe,.]t (15)
E - 2

r [ou,.. pU. + Dy puLY, pUW, pU,.'v,.]t (16)
F - 2

r = lov,, PUVLs PV + D, oy W, pv,.h,.Jt (17)
g - 2

r = [owe, ouw , PV W, P + D, pw,,.h,.]t (18)

$2100,0,00b2+ 2w +od .
’ r wy)f'P(wy*Zw ' e 2 - . - . .
Ve tw72Z), pl-v, wz + W, wy + wwy2 + wwzz)]t
® Since only the rolling motion is solved » the source (19)
term S has been written for g = we_,, and G =3 €.
° X

HIGHLIGHTS OF METHOD OF SOLUTION

1. We use THE CENTRAL-DIFFERENCE FINITE-VOLUME SCHEME wiTH FoUR-STacE RunGeE KuTTa
TIME STEPPING AND EXPLICIT SECOND~ AND FOURTH-ORDER DISSIPATION TERMS-

2. FOR STEADY FLOWS, LOCAL-TIME STEPPING IS USED, AND FOR UNSTEADY FLOWS MINIMUM
GLORAL TIME STEPPING IS USED.

3. A THREE-DIMENSIONAL COMPUTER PROGRAM IS USED TO SOLVE FOR:

- ConicAL FLoWwS (USING 3 CONICAL PLANES,WE ENFORCE THE ABSOLUTE FLOW VECTOR TO BE
EQUAL ON THESE PLANES) .

- DIRECT SOLUTION OF THE THREE-DIMENSIONAL FLOW PROBLEM.

(2]
m

4. DePENDING ON THE PRORLEM UNDER CONSIDERATION, DIFFERENT INITIAL CONDITIONS AR

USED.

5. DEPENDING ON THE PRORLEM "UNDER CONSIDERATION, DIFFERENT SURFACE, FARFIED AND
SYMMETRY _ CONDITIONS ARE USED- FOR SUPERSONIC FLOWS, THE OUTER ROW SHOCK IS

CAPTURED AS PART OF THE SOLUTION.



NUMERICAL EXAMPLLS (1)

SHARP-EDGED WINGS (CLASSICAL EULER EQS. & ZERO-TOTAL-PRESSURE-LOSS SETS)

ROUND-EDGED WINGS (CLASSICAL EURER EQS. & ZERO-TOTAL-PRESSURE-LOSS SETS)
- NUMERICAL BOUNDARY COMDITEON (COARSE AND FINE GRIDS)

= CLOSED FORM BOUNDARY CONDITION (COARSE AND FINE GRIDS)

THREE-DIMENSIONAL TRANSONIC AMD SUBSONIC FLOWS




ORIGIN
OF POOR.QU

AL PAGE IS

ALITY

Figure 1. Standard Euler Set, Sharp-edged Wing, 64X64 Cell,
M= 2.0, «=109, p=70°, 52-0.12. 54-0.005. 1. Surface pressure, 2.

Crossflow Mach number, 3. Crossflow Yelocity.
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- -Pressure-Loss Euler, Set (1), Sharp-edged Wing, 64x64
ﬁi??,’ﬂ‘i}.of°iuloo, p=707, €,=0.12, €,=0.005,1. Surface Pressure,

2. Crossfliow Mach number, 3. Crossflow Velocity.
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